Search

Observation of Laughlin states made of light - Nature.com

sekirta.blogspot.com
  • 1.

    Anderson, P. W. More is different. Science 177, 393–396 (1972).

  • 2.

    Landau, L. D. & Lifshitz, E. M. Statistical Physics: Course of Theoretical Physics Vol. 5 (Addison-Wesley, 1958).

  • 3.

    Chen, X., Gu, Z.-C. & Wen, X.-G. Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 155138 (2010).

  • 4.

    Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

  • 5.

    Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

  • 6.

    Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

  • 7.

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

  • 8.

    Cooper, N. R., Dalibard, J. & Spielman, I. B. Topological bands for ultracold atoms. Rev. Mod. Phys. 91, 015005 (2019).

  • 9.

    Umucalılar, R., Wouters, M. & Carusotto, I. Probing few-particle Laughlin states of photons via correlation measurements. Phys. Rev. A 89, 023803 (2014).

  • 10.

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

  • 11.

    Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

  • 12.

    Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).

  • 13.

    Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009); corrigendum 475, 122 (2011).

  • 14.

    Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).

  • 15.

    Fleischhauer, M., Imamoglu, A. & Marangos, J. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

  • 16.

    Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012).

  • 17.

    Jia, N. et al. A strongly interacting polaritonic quantum dot. Nat. Phys. 14, 550–554 (2018).

  • 18.

    Clark, L. W. et al. Interacting Floquet polaritons. Nature 571, 532–536 (2019).

  • 19.

    Schine, N., Ryou, A., Gromov, A., Sommer, A. & Simon, J. Synthetic Landau levels for photons. Nature 534, 671–675 (2016).

  • 20.

    Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

  • 21.

    Thompson, J. D. et al. Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202–1205 (2013).

  • 22.

    Sommer, A., Büchler, H. P. & Simon, J. Quantum crystals and Laughlin droplets of cavity Rydberg polaritons. Preprint at https://arxiv.org/abs/1506.00341 (2015).

  • 23.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

  • 24.

    Stern, A. Anyons and the quantum Hall effect—a pedagogical review. Ann. Phys. 323, 204–249 (2008).

  • 25.

    Cooper, N. R. Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008).

  • 26.

    Gemelke, N., Sarajlic, E. & Chu, S. Rotating few-body atomic systems in the fractional quantum Hall regime. Preprint at https://arxiv.org/abs/1007.2677 (2010).

  • 27.

    Eckardt, A. Colloquium: atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017).

  • 28.

    Tai, M. E. et al. Microscopy of the interacting Harper–Hofstadter model in the two-body limit. Nature 546, 519–523 (2017).

  • 29.

    Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

  • 30.

    Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2017).

  • 31.

    Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

  • 32.

    Ningyuan, J. et al. Observation and characterization of cavity Rydberg polaritons. Phys. Rev. A 93, 041802 (2016).

  • 33.

    Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

  • 34.

    Grusdt, F., Letscher, F., Hafezi, M. & Fleischhauer, M. Topological growing of Laughlin states in synthetic gauge fields. Phys. Rev. Lett. 113, 155301 (2014).

  • 35.

    Ivanov, P. A., Letscher, F., Simon, J. & Fleischhauer, M. Adiabatic flux insertion and growing of laughlin states of cavity Rydberg polaritons. Phys. Rev. A 98, 013847 (2018).

  • 36.

    Kapit, E., Hafezi, M. & Simon, S. H. Induced self-stabilization in fractional quantum Hall states of light. Phys. Rev. X 4, 031039 (2014).

  • 37.

    Hafezi, M., Adhikari, P. & Taylor, J. Chemical potential for light by parametric coupling. Phys. Rev. B 92, 174305 (2015).

  • 38.

    Umucalılar, R. & Carusotto, I. Generation and spectroscopic signatures of a fractional quantum Hall liquid of photons in an incoherently pumped optical cavity. Phys. Rev. A 96, 053808 (2017).

  • 39.

    Biella, A. et al. Phase diagram of incoherently driven strongly correlated photonic lattices. Phys. Rev. A 96, 023839 (2017).

  • 40.

    Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–57 (2019); correction 570, E52 (2019).

  • 41.

    Paredes, B., Fedichev, P., Cirac, J. & Zoller, P. 1/2-Anyons in small atomic Bose–Einstein condensates. Phys. Rev. Lett. 87, 010402 (2001).

  • 42.

    Umucalılar, R. & Carusotto, I. Many-body braiding phases in a rotating strongly correlated photon gas. Phys. Lett. A 377, 2074–2078 (2013).

  • 43.

    Grusdt, F., Yao, N. Y., Abanin, D., Fleischhauer, M. & Demler, E. Interferometric measurements of many-body topological invariants using mobile impurities. Nat. Commun. 7, 11994 (2016).

  • 44.

    Dutta, S. & Mueller, E. J. Coherent generation of photonic fractional quantum Hall states in a cavity and the search for anyonic quasiparticles. Phys. Rev. A 97, 033825 (2018).

  • 45.

    Macaluso, E., Comparin, T., Mazza, L. & Carusotto, I. Fusion channels of non-Abelian anyons from angular-momentum and density-profile measurements. Phys. Rev. Lett. 123, 266801 (2019).

  • 46.

    Regnault, N. & Jolicoeur, T. Quantum Hall fractions for spinless bosons. Phys. Rev. B 69, 235309 (2004).

  • 47.

    Gopalakrishnan, S., Lev, B. L. & Goldbart, P. M. Emergent crystallinity and frustration with Bose–Einstein condensates in multimode cavities. Nat. Phys. 5, 845–850 (2009).

  • 48.

    Wickenbrock, A., Hemmerling, M., Robb, G. R., Emary, C. & Renzoni, F. Collective strong coupling in multimode cavity QED. Phys. Rev. A 87, 043817 (2013).

  • 49.

    Ritsch, H., Domokos, P., Brennecke, F. & Esslinger, T. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys. 85, 553–601 (2013).

  • 50.

    Douglas, J. S. et al. Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326–331 (2015).

  • 51.

    Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

  • 52.

    Vaidya, V. D. et al. Tunable-range, photon-mediated atomic interactions in multimode cavity QED. Phys. Rev. X 8, 011002 (2018).

  • 53.

    Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

  • 54.

    Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

  • 55.

    Lim, H.-T., Togan, E., Kroner, M., Miguel-Sanchez, J. & Imamoğlu, A. Electrically tunable artificial gauge potential for polaritons. Nat. Commun. 8, 14540 (2017).

  • 56.

    Schine, N., Chalupnik, M., Can, T., Gromov, A. & Simon, J. Electromagnetic and gravitational responses of photonic Landau levels. Nature 565, 173–179 (2019).

  • 57.

    Hartmann, M. J., Brandao, F. G. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006).

  • 58.

    Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. Quantum phase transitions of light. Nat. Phys. 2, 856–861 (2006).

  • 59.

    Angelakis, D. G., Santos, M. F. & Bose, S. Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays. Phys. Rev. A 76, 031805 (2007).

  • 60.

    Cho, J., Angelakis, D. G. & Bose, S. Fractional quantum Hall state in coupled cavities. Phys. Rev. Lett. 101, 246809 (2008).

  • 61.

    Nunnenkamp, A., Koch, J. & Girvin, S. Synthetic gauge fields and homodyne transmission in Jaynes–Cummings lattices. New J. Phys. 13, 095008 (2011).

  • 62.

    Hayward, A. L., Martin, A. M. & Greentree, A. D. Fractional quantum Hall physics in Jaynes–Cummings–Hubbard lattices. Phys. Rev. Lett. 108, 223602 (2012).

  • 63.

    Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).

  • 64.

    Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

  • 65.

    Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).

  • 66.

    Mohapatra, A., Jackson, T. & Adams, C. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007).

  • 67.

    Pritchard, J. D. et al. Cooperative atom-light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett. 105, 193603 (2010).

  • 68.

    Guerlin, C., Brion, E., Esslinger, T. & Mølmer, K. Cavity quantum electrodynamics with a Rydberg-blocked atomic ensemble. Phys. Rev. A 82, 053832 (2010).

  • 69.

    Gorshkov, A. V., Otterbach, J., Fleischhauer, M., Pohl, T. & Lukin, M. D. Photon–photon interactions via Rydberg blockade. Phys. Rev. Lett. 107, 133602 (2011).

  • 70.

    Dudin, Y. O. & Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887–889 (2012).

  • 71.

    Tiarks, D., Baur, S., Schneider, K., Dürr, S. & Rempe, G. Single-photon transistor using a Förster resonance. Phys. Rev. Lett. 113, 053602 (2014).

  • 72.

    Gorniaczyk, H., Tresp, C., Schmidt, J., Fedder, H. & Hofferberth, S. Single-photon transistor mediated by interstate Rydberg interactions. Phys. Rev. Lett. 113, 053601 (2014).

  • 73.

    Boddeda, R. et al. Rydberg-induced optical nonlinearities from a cold atomic ensemble trapped inside a cavity. J. Phys. B 49, 084005 (2016).

  • 74.

    Georgakopoulos, A., Sommer, A. & Simon, J. Theory of interacting cavity Rydberg polaritons. Quantum Sci. Technol. 4, 014005 (2018).

  • 75.

    Tanji-Suzuki, H. et al. in Advances in Atomic, Molecular, and Optical Physics Vol. 60 (eds Arimondo, E. et al.) 201–237 (Elsevier, 2011).

  • 76.

    Sommer, A. & Simon, J. Engineering photonic Floquet Hamiltonians through Fabry–Pérot resonators. New J. Phys. 18, 035008 (2016).

  • 77.

    Kerman, A. J. Vuletić, V., Chin, C. & Chu, S. Beyond optical molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density. Phys. Rev. Lett. 84, 439–442 (2000).

  • 78.

    Zupancic, P. et al. Ultra-precise holographic beam shaping for microscopic quantum control. Opt. Express 24, 13881–13893 (2016).

  • Let's block ads! (Why?)



    "light" - Google News
    June 03, 2020 at 10:15PM
    https://ift.tt/306dlOa

    Observation of Laughlin states made of light - Nature.com
    "light" - Google News
    https://ift.tt/2Wm8QLw
    https://ift.tt/2Stbv5k

    Bagikan Berita Ini

    0 Response to "Observation of Laughlin states made of light - Nature.com"

    Post a Comment

    Powered by Blogger.