Search

Light-driven post-translational installation of reactive protein side chains - Nature.com

sekirta.blogspot.com
  • 1.

    Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J., Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. 44, 7342–7372 (2005).

    CAS  Google Scholar 

  • 2.

    Deribe, Y. L., Pawson, T. & Dikic, I. Post-translational modifications in signal integration. Nat. Struct. Mol. Biol. 17, 666 (2010).

    CAS  PubMed  Google Scholar 

  • 3.

    Howard, C. J., Yu, R. R., Gardner, M. L., Shimko, J. C. & Ottesen, J. J. Chemical and biological tools for the preparation of modified histone proteins. Top. Curr. Chem. 363, 193–226 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Yang, A., Cho, K. & Park, H.-S. Chemical biology approaches for studying posttranslational modifications. RNA Biol. 15, 427–440 (2018).

    PubMed  Google Scholar 

  • 5.

    Ducry, L. & Stump, B. Antibody−drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug. Chem. 21, 5–13 (2010).

    CAS  PubMed  Google Scholar 

  • 6.

    Hinner, M. J. & Johnsson, K. How to obtain labeled proteins and what to do with them. Curr. Opin. Biotechnol. 21, 766–776 (2010).

    CAS  PubMed  Google Scholar 

  • 7.

    Leitner, A. et al. Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol. Cell. Proteomics 9, 1634 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Wang, L., Brock, A., Herberich, B. & Schultz, P. G. Expanding the genetic code of Escherichia coli. Science 292, 498 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    Dumas, A., Lercher, L., Spicer, C. D. & Davis, B. G. Designing logical codon reassignment – expanding the chemistry in biology. Chem. Sci. 6, 50–69 (2015).

    CAS  PubMed  Google Scholar 

  • 10.

    Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Klemes, Y., Etlinger, J. D. & Goldberg, A. L. Properties of abnormal proteins degraded rapidly in reticulocytes. Intracellular aggregation of the globin molecules prior to hydrolysis. J. Biol. Chem. 256, 8436–8444 (1981).

    CAS  PubMed  Google Scholar 

  • 12.

    Chalker, J. M. & Davis, B. G. Chemical mutagenesis: selective post-expression interconversion of protein amino acid residues. Curr. Opin. Chem. Biol. 14, 781–789 (2010).

    CAS  PubMed  Google Scholar 

  • 13.

    Wright, T. H., Vallée, M. R. J. & Davis, B. G. From chemical mutagenesis to post-expression mutagenesis: a 50 year Odyssey. Angew. Chem. Int. Ed. 55, 5896–5903 (2016).

    CAS  Google Scholar 

  • 14.

    Wright, T. H. et al. Posttranslational mutagenesis: a chemical strategy for exploring protein side-chain diversity. Science 354, aag1465 (2016).

    PubMed  Google Scholar 

  • 15.

    Yang, A. et al. A chemical biology route to site-specific authentic protein modifications. Science 354, 623–626 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Tamura, T. & Hamachi, I. Chemistry for covalent modification of endogenous/native proteins: from test tubes to complex biological systems. J. Am. Chem. Soc. 141, 2782–2799 (2019).

    CAS  PubMed  Google Scholar 

  • 17.

    Wright, T. H. & Davis, B. G. Post-translational mutagenesis for installation of natural and unnatural amino acid side chains into recombinant proteins. Nat. Protoc. 12, 2243–2250 (2017).

    PubMed  Google Scholar 

  • 18.

    Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

    CAS  Google Scholar 

  • 19.

    Imiołek, M. et al. Selective radical trifluoromethylation of native residues in proteins. J. Am. Chem. Soc. 140, 1568–1571 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Isenegger, P. G. & Davis, B. G. Concepts of catalysis in site-selective protein modifications. J. Am. Chem. Soc. 141, 8005–8013 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Lim, R. K. V. & Lin, Q. Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. Acc. Chem. Res. 44, 828–839 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    CAS  Google Scholar 

  • 23.

    Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Bloom, S. et al. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials. Nat. Chem. 10, 205 (2018).

    CAS  PubMed  Google Scholar 

  • 25.

    Yu, Y. et al. Chemoselective peptide modification via photocatalytic tryptophan β-position conjugation. J. Am. Chem. Soc. 140, 6797–6800 (2018).

    CAS  PubMed  Google Scholar 

  • 26.

    de Bruijn, A. D. & Roelfes, G. Chemical modification of dehydrated amino acids in natural antimicrobial peptides by photoredox catalysis. Chem. Eur. J. 24, 11314–11318 (2018).

    PubMed  Google Scholar 

  • 27.

    Povie, G. et al. Catechols as sources of hydrogen atoms in radical deiodination and related reactions. Angew. Chem. Int. Ed. 55, 11221–11225 (2016).

    CAS  Google Scholar 

  • 28.

    Matsui, J. K., Lang, S. B., Heitz, D. R. & Molander, G. A. Photoredox-mediated routes to radicals: the value of catalytic radical generation in synthetic methods development. ACS Catal. 7, 2563–2575 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Robole, Z. M., Rahn, K. L., Lampkin, B. J., Anand, R. K. & VanVeller, B. Tuning the electrochemical redox potentials of catechol with boronic acid derivatives. J. Org. Chem. 84, 2346–2350 (2019).

    CAS  PubMed  Google Scholar 

  • 30.

    Ghosh, T. et al. Mixed-ligand complexes of ruthenium(ii) containing new photoactive or electroactive ligands: synthesis, spectral characterization and DNA interactions. J. Biol. Inorg. Chem. 10, 496 (2005).

    CAS  PubMed  Google Scholar 

  • 31.

    Dolbier, W. R. Structure, reactivity, and chemistry of fluoroalkyl radicals. Chem. Rev. 96, 1557–1584 (1996).

    CAS  PubMed  Google Scholar 

  • 32.

    Zhang, L., Dolbier, W. R., Sheeller, B. & Ingold, K. U. Absolute rate constants of alkene addition reactions of a fluorinated radical in water. J. Am. Chem. Soc. 124, 6362–6366 (2002).

    CAS  PubMed  Google Scholar 

  • 33.

    O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 37, 308–319 (2008).

    PubMed  Google Scholar 

  • 34.

    Lemos, A., Lemaire, C. & Luxen, A. Progress in difluoroalkylation of organic substrates by visible light photoredox catalysis. Adv. Synth. Catal. 361, 1500–1537 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Rong, J. et al. Radical fluoroalkylation of isocyanides with fluorinated sulfones by visible-light photoredox catalysis. Angew. Chem. Int. Ed. 55, 2743–2747 (2016).

    CAS  Google Scholar 

  • 36.

    Berlicki, L., Obojska, A., Forlani, G. & Kafarski, P. Design, synthesis, and activity of analogues of phosphinothricin as inhibitors of glutamine synthetase. J. Med. Chem. 48, 6340–6349 (2005).

    CAS  PubMed  Google Scholar 

  • 37.

    Griller, D. & Ingold, K. U. Free-radical clocks. Acc. Chem. Res. 13, 317–323 (1980).

    CAS  Google Scholar 

  • 38.

    Chen, Y., Kamlet, A. S., Steinman, J. B. & Liu, D. R. A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system. Nat. Chem. 3, 146–153 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Huang, H. et al. Lysine benzoylation is a histone mark regulated by SIRT2. Nat. Commun. 9, 3374 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Dyer, P. N. et al. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol. 375, 23–44 (2003).

    Google Scholar 

  • 41.

    Page, M. I. & Jencks, W. P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc. Natl Acad. Sci. USA 68, 1678–1683 (1971).

    ADS  CAS  PubMed  Google Scholar 

  • 42.

    Krishnamurthy, V. M., Semetey, V., Bracher, P. J., Shen, N. & Whitesides, G. M. Dependence of effective molarity on linker length for an intramolecular protein−ligand system. J. Am. Chem. Soc. 129, 1312–1320 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Ng, S. S. et al. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 448, 87–91 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 44.

    English, C. M., Adkins, M. W., Carson, J. J., Churchill, M. E. & Tyler, J. K. Structural basis for the histone chaperone activity of Asf1. Cell 127, 495–508 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Meeusen, J. W., Tomasiewicz, H., Nowakowski, A. & Petering, D. H. TSQ (6-methoxy-8-p-toluenesulfonamido-quinoline), a common fluorescent sensor for cellular zinc, images zinc proteins. Inorg. Chem. 50, 7563–7573 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Freedman, H. H. & Dubois, R. A. An improved Williamson ether synthesis using phase transfer catalysis. Tetrahedr. Lett. 16, 3251–3254 (1975).

    Google Scholar 

  • 47.

    Mandal, S. et al. A review on the advancement of ether synthesis from organic solvent to water. RSC Adv. 6, 69605–69614 (2016).

    CAS  Google Scholar 

  • 48.

    Levin, M., Stark, M. & Assaraf, Y. G. The JmjN domain as a dimerization interface and a targeted inhibitor of KDM4 demethylase activity. Oncotarget 9, 16861–16882 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 49.

    Shin, S. & Janknecht, R. Diversity within the JMJD2 histone demethylase family. Biochem. Biophys. Res. Commun. 353, 973–977 (2007).

    CAS  PubMed  Google Scholar 

  • 50.

    Karle, I. L. & Balaram, P. Structural characteristics of .alpha.-helical peptide molecules containing Aib residues. Biochemistry 29, 6747–6756 (1990).

    CAS  PubMed  Google Scholar 

  • 51.

    Lonsdale, R. & Ward, R. A. Structure-based design of targeted covalent inhibitors. Chem. Soc. Rev. 47, 3816–3830 (2018).

    CAS  PubMed  Google Scholar 

  • 52.

    Angerani, S. & Winssinger, N. Visible light photoredox catalysis using ruthenium complexes in chemical biology. Chem. Eur. J. 25, 6661–6672 (2019).

    CAS  PubMed  Google Scholar 

  • 53.

    Yang, B. et al. Genetically introducing biochemically reactive amino acids dehydroalanine and dehydrobutyrine in proteins. J. Am. Chem. Soc. 141, 7698–7703 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Renaud, P., André-Joyaux, E., Kuzovlev, A. & Tappin, N. D. A general approach to deboronative radical chain reaction with pinacol alkylboronic esters. Angew. Chem. Int. Ed. 59, 13859 (2020).

    Google Scholar 

  • 55.

    Li, Q. et al. Developing covalent protein drugs via proximity-enabled reactive therapeutics. Cell 182, 85–97 (2020).

    CAS  PubMed  Google Scholar 

  • Let's block ads! (Why?)



    "light" - Google News
    September 23, 2020 at 10:07PM
    https://ift.tt/2FTcatA

    Light-driven post-translational installation of reactive protein side chains - Nature.com
    "light" - Google News
    https://ift.tt/2Wm8QLw
    https://ift.tt/2Stbv5k

    Bagikan Berita Ini

    0 Response to "Light-driven post-translational installation of reactive protein side chains - Nature.com"

    Post a Comment

    Powered by Blogger.